Scaling limits for equivariant Szego kernels

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling limits for equivariant Szegö kernels

Let (M,J) be an n-dimensional complex projective manifold, and let L be an Hermitian ample line bundle on M . Suppose that the unique compatible connection on L has curvature Θ = −2i ω, where ω is a Hodge form on M . The pair (ω, J) puts a unitary structure on the (holomorphic) tangent bundle TM , hence a Riemannian structure on M . Let G be a compact connected g-dimensional Lie group, and supp...

متن کامل

Scaling Limits for Mixed Kernels

Let μ and ν be measures supported on (−1, 1) with corresponding orthonormal polynomials { pn } and {pn} respectively. Define the mixed kernel K n (x, y) = n−1 ∑ j=0 pμj (x) p ν j (y) . We establish scaling limits such as lim n→∞ π √ 1− ξ √ μ′ (ξ) ν′ (ξ) n K n ( ξ + aπ √ 1− ξ n , ξ + bπ √ 1− ξ n ) = S ( π (a− b) 2 ) cos ( π (a− b) 2 +B (ξ) ) , where S (t) = sin t t is the sinc kernel, and B (ξ) ...

متن کامل

Szego Kernels and a Theorem of Tian

A variety of results in complex geometry and mathematical physics depend upon the analysis of holomorphic sections of high powers L⊗N of holomorphic line bundles L → M over compact Kähler manifolds ([A][Bis][Bis.V] [Bou.1][Bou.2][B.G][D][Don] [G][G.S][K][Ji] [T] [W]). The principal tools have been Hörmander’s L-estimate on the ∂̄-operator over M [T], the asymptotics of heat kernels kN (t, x, y) ...

متن کامل

Learning Equivariant Functions with Matrix Valued Kernels

This paper presents a new class of matrix valued kernels that are ideally suited to learn vector valued equivariant functions. Matrix valued kernels are a natural generalization of the common notion of a kernel. We set the theoretical foundations of so called equivariant matrix valued kernels. We work out several properties of equivariant kernels, we give an interpretation of their behavior and...

متن کامل

Optimally Rotation-Equivariant Directional Derivative Kernels

We describe a framework for the design of directional derivative kernels for two-dimensional discrete signals in which we optimize a measure of rotation-equivariance in the Fourier domain. The formulation is applicable to rst-order and higher-order derivatives. We design a set of compact, separable, linear-phase derivative kernels of di erent orders and demonstrate their accuracy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symplectic Geometry

سال: 2008

ISSN: 1527-5256,1540-2347

DOI: 10.4310/jsg.2008.v6.n1.a2